If it's not what You are looking for type in the equation solver your own equation and let us solve it.
q^2-100q=4
We move all terms to the left:
q^2-100q-(4)=0
a = 1; b = -100; c = -4;
Δ = b2-4ac
Δ = -1002-4·1·(-4)
Δ = 10016
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{10016}=\sqrt{16*626}=\sqrt{16}*\sqrt{626}=4\sqrt{626}$$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-100)-4\sqrt{626}}{2*1}=\frac{100-4\sqrt{626}}{2} $$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-100)+4\sqrt{626}}{2*1}=\frac{100+4\sqrt{626}}{2} $
| 8(4x-1)=-232 | | 3x+6x-5=35 | | 41-2p=79 | | 45x+6=34 | | 7(2x+5x)=3x+14 | | 3a=0.39a= | | 6x+-16=4x+6 | | 3x^2=-396 | | 9k+7=97 | | 2n+68=12-5(n-6) | | 7x-11=6x-1 | | -115.13=-5.8(7.1+2.5n) | | 96=8(d+4) | | .16(18)+0.04x=0.08(24+x) | | 7x-11+6x-1=180 | | 2.1=2.70t-4.905t^2 | | f(-2)=4(-2)+5 | | x^2-30=60 | | (x+6)2=4 | | (x+2)/(x-2)=2 | | 5x-19=4x-8 | | 10(g+5)=2g(g+9) | | 10+0.07x+9x=15x | | -5p+5+6p=9 | | x/3+5/6=11/12 | | 4+12x=2+-6 | | 7/12-2/3=x-9/4 | | 150x+4=182.84x | | −5x−28=3x+12 | | 11+1/2x=2 | | 5-5x=2x+7 | | -7(2x+3)-5=-5(3x+2)-4 |